

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 1 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

TITLE

SpaceCloud Framework

PROJECT

InCubed Phase 1

Action Name Function Date

Author: Aris Synodinos System Engineer 10/28/2020

Reviewed by:

Checked by:

Authorized by:

Copying of this document, and giving it to others and
the use or communication of the contents, thereof, is
forbidden without express authority. Offenders are

liable to the payment of damages. All rights are
reserved in the event of the grant of a patent or the

registration of utility model or design.

Unibap AB (publ.)
Kungsängsgatan 12
SE-753 22 Uppsala

Sweden
Tel: +46-18-320 330
info@unibap.com

unibap.com

Kopiering av detta dokument, delgivande till

andra samt använda eller kommunicera

innehållet, är förbjudet utan specifikt tillstånd.

Brott mot detta kan lede till skadeståndskrav.

Alla rättigheter är reserverade i händelse av

patent eller registrering av design.

https://www.unibap.com/
https://www.unibap.com/
mailto:info@unibap.com
https://unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 2 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

Distribution List
Name No. of Copies Company / Organization

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 3 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

Document Change Record
Issue Date Page Comments Author

1 10/28/2020 - Initial issue ArSy

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 4 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

Table of Contents
1 INTRODUCTION .. 7

1.1 Intended Audience .. 7

2 DOCUMENTS .. 8

2.1 Applicable Documents .. 8

2.2 Reference Documents ... 8

2.3 Acronyms & Abbreviation List ... 9

2.4 Definitions .. 9

3 ARCHITECTURE ... 10

3.1 SCFW Roles ... 10

3.1.1 Administrator .. 10

3.1.2 Developer .. 10

3.1.3 User ... 10

3.2 Capabilities ... 11

3.2.1 Computation ... 11

3.2.2 Concurrency .. 11

3.2.3 Storage .. 12

3.2.4 Sensors .. 12

3.2.5 Communication .. 12

4 APPLICATION DEVELOPMENT ... 13

4.1 Accessing the SDK ... 13

4.2 Downloading the SDK ... 13

4.3 Creating a basic app – Hello world! .. 13

4.3.1 Dockerfile .. 13

4.3.2 Build the app ... 14

4.4 SpaceCloud Framework API ... 14

4.5 Accessing the sensors .. 17

4.5.1 Making gRPC calls ... 17

4.5.2 Build the app ... 17

4.5.3 Deserializing the image .. 18

4.5.4 Location .. 19

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 5 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

4.6 Getting persistent storage ... 20

4.7 Setting up communication .. 21

4.8 Running multiple applications ... 22

4.9 Releasing new applications ... 23

4.9.1 Tagging the application .. 24

4.9.2 Uploading the application .. 24

4.10 Advanced Usage ... 24

5 APPLICATION TESTING .. 25

5.1 Execution parameters ... 25

5.2 Execution results... 26

5.3 Conformance testing ... 27

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 6 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

List of Figures
Figure 1 SpaceCloud Framework ... 7
Figure 2 SCFW simplified model .. 10
Figure 3 SCFW Node hardware ... 11
Figure 4 Generic Sensor Interface abstraction layer ... 12
Figure 5 The SCFW Conformance Testing suite... 27

List of Tables
Table 2-1 Applicable Documents ... 8
Table 2-2 Reference Documents ... 8
Table 2-3 Acronyms & Abbreviation List ... 9
Table 2-4 Definition List ... 9

List of Code Blocks
Code 1 Login the SCFW registry .. 13
Code 2 Hello world dockerfile ... 14
Code 3 Building an application .. 14
Code 4 Build output ... 14
Code 5 Locally running an application... 14
Code 6 SCFW Proto API ... 15
Code 7 RunApplication message ... 15
Code 8 SetStorageSynchronization message .. 15
Code 9 GetImage message .. 17
Code 10 GetLocation message .. 17
Code 11 Requesting an Image ... 17
Code 12 Dockerfile for sensors demo ... 18
Code 13 Image converter python .. 19
Code 14 Image converter dockerfile ... 19
Code 15 Get location python... 20
Code 16 Persistent storage ... 21
Code 17 ARMS communication python .. 22
Code 18 Run concurrent application python .. 23
Code 19 Docker tag ... 24
Code 20 Docker push ... 24
Code 21 Multistage building.. 24
Code 22 Execution parameters ... 26

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 7 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

1 Introduction
The SpaceCloud Framework revolutionizes satellite software development, converting purpose

built custom space hardware into flexible and reusable compute nodes.

Most sensor data from satellites gets downlinked to earth, where it gets distributed to either HPC

clusters for processing or gets forwarded to one of the major cloud processing providers. There are

some disadvantages in this approach, but the processing power in most satellites and the difficulty

of development and deployment for space missions has always been a limiting factor for

advancement.

The Unibap SpaceCloudTM line of products includes both the hardware and the software platform

to simplify space missions, providing an all-inclusive solution for data processing in orbit and

management software on ground.

Figure 1 SpaceCloud Framework

1.1 Intended Audience
This manual is intended for users who want an introduction to the SCFW, either to understand the

software concepts introduced in the platform or for getting hands-on with developing SCFW

applications. The SCFW is currently in alpha testing phase, with all tests performed in a controlled

environment on Unibap AB premises. The following document describes the process for

developing and testing applications during this phase of the framework and does not represent the

final form of the SCFW. Both the API as well as all the processes themselves can be changed

depending on feedback from users as well as internal development.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 8 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

2 Documents

2.1 Applicable Documents
This document shall be read in conjunction with documents listed hereafter, which form part of

this document to the extent specified herein. In case of a conflict between any provisions of this

document and the provisions of the documents listed hereafter, the content of the contractually

higher document shall be considered as superseding.

AD Doc. No. Issue Rev. Title

[AD1]

[AD2]

[AD3]

[AD4]

[AD5]

Table 2-1 Applicable Documents

2.2 Reference Documents
The following documents contain additional information that is relevant to the scope of this

document.

RD Doc. No. Issue Rev. Title

[RD1]

[RD2]

[RD3]

[RD4]

Table 2-2 Reference Documents

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 9 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

2.3 Acronyms & Abbreviation List
Abbreviations are listed in Table 2-3 of this document

 Abbreviations

UAB Unibap AB (publ.)

SCFW SpaceCloud Framework

SCHW SpaceCloud Hardware

SDK Software Development Kit

API Application Programming Interface

RPC Remote Procedure Call

OCI Open Container Initiative

Table 2-3 Acronyms & Abbreviation List

2.4 Definitions
Definitions are listed in Table 2-4 of this document.

Definitions

SCFW Context The isolated environment where all applications of a user get executed

Table 2-4 Definition List

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 10 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

3 Architecture
The software stack of the SCFW abstracts the hardware and to some extent the operating system

from satellite applications. A deployed SCFW system is comprised of two different types of

systems, the administration system and the computational nodes.

There are different roles for interacting with the SCFW, each role having different permissions and

capabilities. All interaction uses the SCFW Administration as the entry point, the SCFW Nodes are

self-contained systems that do not interact directly with any of the specified roles, but only

indirectly through the specified API.

Figure 2 SCFW simplified model

3.1 SCFW Roles
There are three predefined roles on a typical SCFW Administration server. Each account on the

platform can be a member of any number or roles, enabling different permissions and functionality

for each of those.

3.1.1 Administrator

The administrator role is responsible of administering the SCFW Nodes that are managed by the

installation. He specifies what operations each node will perform, including approving execution of

applications and upgrading the SCFW software of each node. He is also responsible of performing

the initial installation of the SCFW Node software on the actual SCHW.

3.1.2 Developer

The developer role can upload new applications to the SCFW AppStore. As an independent

developer, one would develop generic applications that provide some generic capability – easily

configurable for end users (e.g. a cloud detecting application). Those applications would be

customer agnostic and accessible publicly – either freely or under some licensing contract.

As a mission specific developer, one would develop private applications that cannot be used by

other users. He can then select the specific SCFW accounts that the application will be accessible

and deployable from.

3.1.3 User

The user role describes the end-user of the platform. As a user, one can request applications to

execute on SCFW Nodes. The user defines which applications he wants to execute, when to execute

them and on what resources. The user defines all the configuration of application execution,

including storage, access to CPU, GPU or other hardware accelerators. Access to sensors as well as

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 11 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

communications interfaces are also defined by the user. The user does not decide what gets

deployed or not on an actual SCFW Node, that is the responsibility of the administrator, however

the user is the role that makes the application execution request.

3.2 Capabilities
• CPU, GPU, VPU access for computation

• Concurrency of multiple applications in a sandboxed environment

• Persistent and Temporary isolated storage space for each account

• Unified sensors API

• Unified Communication API

Figure 3 SCFW Node hardware

3.2.1 Computation

The SCFW is designed with the limitations of space operation in mind. Given that, applications

deployed on nodes can utilize the SCHW computational capabilities to the maximum, with an

insignificant amount of overhead compared to bare-metal application development.

Access to CPU, GPU and even VPU can be enabled for developed SCFW Apps available to the SCFW

Container Registry. Depending on the actual hardware capabilities of the node, a user can utilize

the devices optimally to perform efficiently computations directly on the satellite and reduce the

latency from data gathering to actionable decisions.

3.2.2 Concurrency

The SCFW makes sharing node resources simple. When a user specifies the SCFW Context, he

chooses if during execution, other SCFW Contexts can be launched concurrently. This allows

multiple users to execute software concurrently on the same Node in complete isolation.

To complement that, concurrency is also supported within the context as well as. A user can

specify multiple applications to be spawned automatically or manually within his SCFW Context,

allowing him to communicate over IP through a virtual networking device with hostname

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 12 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

resolution. Complex pipelines can therefore be accommodated with off-the-shelf applications

supplied by experienced developers – cloud detection, fire detection or other applications that can

be deployed to the next SCFW-enabled satellite.

3.2.3 Storage

Both persistent and temporary storage are provided in SCFW applications in the form of simple file

storage. This allows developers and users to utilize their existing codebase that assumes normal

filesystem access to their SpaceCloud applications.

3.2.4 Sensors

Satellite sensors vary significantly depending on mission objectives and hardware architecture.

The SCFW aims to reduce the complexity of developing highly specialized satellite software that

only executes on one specific platform by providing a generic abstract API for common types of

sensors.

Figure 4 Generic Sensor Interface abstraction layer

3.2.5 Communication

In order to simplify radio communication for app developers and users, the SCFW uses the

persistent file system storage as the data layer for communication. App developers and users no

longer need to be developing or maintaining complex communication frameworks and

serialization/deserialization algorithms. With the SCFW, you save your files into the persistent

storage volume and notify that you want that volume to be synchronized down or up. On the next

synchronization event, you will have your files synced to your favorite cloud provider, easy to

access and process without having to learn new libraries.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 13 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

4 Application Development
The SCFW utilizes container images and containers for encapsulating SCFW applications. In order

to create applications, it is useful to have some familiarity with one of the popular OCI tools, either

docker or podman. Due to the larger userbase, the examples included in this manual will use

docker, but replacing docker with podman should be simple and most likely a drop-in

replacement.

The installation of those tools is not covered in this manual and can be found in the

documentation of the tools themselves for various operating systems. It is recommended to use a

GNU/Linux computer as a development machine. Although docker is supported in Windows 10,

some functionality may be experimental or even completely unsupported.

4.1 Accessing the SDK
In order to access the SDK, you must have an account to access the SCFW container registry. To

create an account, you must send an email to spacecloud@unibap.com with the subject “SCFW

Account” and in the body the username, full name and company name.

Once the account has been created, you can login to https://spacecloud.unibap.com/ in order to

be able to download the SDK.

4.2 Downloading the SDK
Once you have obtained the username and password for the SCFW container registry, you can use

that to permanently login your development machine to docker. To do that, in a terminal issue the

following command

docker login spacecloud.unibap.com

Code 1 Login the SCFW registry

It will then ask you the username and password and once these are entered, you will be able to pull

and push container images to the registry.

4.3 Creating a basic app – Hello world!
There are many ways to create a new container image, and not all will be covered in this manual.

The following instructions will guide the user step-by-step into creating a simple SCFW Application,

other methodologies are also compatible if they create valid container images. For more complex

use cases, one can read on section 4.10.

4.3.1 Dockerfile

To create a container image, you should create a description file that your preferred image builder

will parse and attempt to generate your application. Docker and Buildah, the most popular tools

for building images, support dockerfiles as input.

The first line of a dockerfile is typically the FROM statement. This defines the base image that is

used for generating your application. It is recommended to use the SCFW Runtime image for your

application, as it will limit the bandwidth required to upload your application to SCFW Nodes.

https://www.unibap.com/
https://www.unibap.com/
mailto:spacecloud@unibap.com
https://spacecloud.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 14 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

The following two lines are simple and self-explanatory, SHELL defines the shell that will be used

for the subsequent instructions during the build of the container image and CMD defines which

command will run when the container images will be executed. In this example, command echo

will run with argument the string “Hello Spacecloud!”.

FROM spacecloud.unibap.com/unibap/framework-runtime

SHELL ["/bin/bash", "-c"]

CMD ["echo", "Hello Spacecloud!"]

Code 2 Hello world dockerfile

4.3.2 Build the app

To create a container image from this dockerfile, you issue the following command in a terminal

docker build .

Code 3 Building an application

Which generates the following output

Sending build context to Docker daemon 2.048kB

Step 1/3 : FROM spacecloud.unibap.com/unibap/framework-runtime

 ---> 4791e059cb7e

Step 2/3 : SHELL ["/bin/bash", "-c"]

 ---> Running in 0fdb5296b621

Removing intermediate container 0fdb5296b621

 ---> 767145655802

Step 3/3 : CMD ["echo", "Hello Spacecloud!"]

 ---> Running in 6f99b5f1b68a

Removing intermediate container 6f99b5f1b68a

 ---> 76f9b9e4a8ba

Successfully built 76f9b9e4a8ba

Code 4 Build output

To execute the container image generated, you can use the generated hash id as following

docker run 76f9b9e4a8ba

Hello Spacecloud!

Code 5 Locally running an application

You can pull this container image at spacecloud.unibap.com/unibap/hello-world:latest

4.4 SpaceCloud Framework API
Although direct access to computational resources is feasible for SCFW applications, all other

common resources on SCFW Nodes are accessed indirectly with RPC. This allows access to the

sensor data and all functionality provided by the SCFW through multiple different programming

languages.

The gRPC framework is chosen, due to the simplicity, accessibility and popularity. The API of the

SCFW can therefore be defined using protobuf description files that can be parsed and create

language specific implementation files. This manual does not dive into the details of the gRPC

framework, as the documentation provided by the developers is very extensive and easily

accessible.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 15 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

There are two gRPC servers handling incoming requests from executing applications. The ARMS

server handles Resource Management on port 50001 while the sensors server handles all requests

for sensor data on port 50002. The IP that must be used to ensure reliable communication to the

SCFW is 172.17.0.1 on an insecure channel.

The protobuf file description for the supported RPC methods are described in the following code

block.

syntax = "proto3";

import public "google/protobuf/timestamp.proto";

package spacecloud;

service ARMS {

 rpc RunApplication(RunApplicationRequest) returns

(RunApplicationResponse) {}

 rpc SetStorageSynchronization(SetStorageSynchronizationRequest) returns

(SetStorageSynchronizationResponse) {}

}

service Sensors {

 rpc GetImage(GetImageRequest) returns (GetImageResponse) {}

 rpc GetLocation(GetLocationRequest) returns (GetLocationResponse) {}

}

Code 6 SCFW Proto API

While the messages for those services are defined in the following codeblocks

message RunApplicationRequest {

 string hostname = 1;

}

message RunApplicationResponse {}

Code 7 RunApplication message

message SetStorageSynchronizationRequest {

 enum ModeType {

 SYNCHRONIZE_UPLINK_ERASE = 0;

 SYNCHRONIZE_UPLINK_MAINTAIN = 1;

 SYNCHRONIZE_DOWNLINK_ERASE = 2;

 SYNCHRONIZE_DOWNLINK_MAINTAIN = 3;

 }

 string name = 1;

 int32 priority = 2;

 ModeType mode = 3;

}

message SetStorageSynchronizationResponse {}

Code 8 SetStorageSynchronization message

message GetImageRequest {}

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 16 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

message GetImageResponse {

 google.protobuf.Timestamp stamp = 1;

 uint32 height = 2;

 uint32 width = 3;

 enum EncodingType {

 ENCODING_TYPE_UNKNOWN = 0;

 ENCODING_TYPE_RGB8 = 1;

 ENCODING_TYPE_RGBA8 = 2;

 ENCODING_TYPE_RGB16 = 3;

 ENCODING_TYPE_RGBA16 = 4;

 ENCODING_TYPE_BGR8 = 5;

 ENCODING_TYPE_BGRA8 = 6;

 ENCODING_TYPE_BGR16 = 7;

 ENCODING_TYPE_BGRA16 = 8;

 ENCODING_TYPE_MONO8 = 9;

 ENCODING_TYPE_MONO16 = 10;

 ENCODING_TYPE_8UC1 = 11;

 ENCODING_TYPE_8UC2 = 12;

 ENCODING_TYPE_8UC3 = 13;

 ENCODING_TYPE_8UC4 = 14;

 ENCODING_TYPE_8SC1 = 15;

 ENCODING_TYPE_8SC2 = 16;

 ENCODING_TYPE_8SC3 = 17;

 ENCODING_TYPE_8SC4 = 18;

 ENCODING_TYPE_16UC1 = 19;

 ENCODING_TYPE_16UC2 = 20;

 ENCODING_TYPE_16UC3 = 21;

 ENCODING_TYPE_16UC4 = 22;

 ENCODING_TYPE_16SC1 = 23;

 ENCODING_TYPE_16SC2 = 24;

 ENCODING_TYPE_16SC3 = 25;

 ENCODING_TYPE_16SC4 = 26;

 ENCODING_TYPE_32SC1 = 27;

 ENCODING_TYPE_32SC2 = 28;

 ENCODING_TYPE_32SC3 = 29;

 ENCODING_TYPE_32SC4 = 30;

 ENCODING_TYPE_32FC1 = 31;

 ENCODING_TYPE_32FC2 = 32;

 ENCODING_TYPE_32FC3 = 33;

 ENCODING_TYPE_32FC4 = 34;

 ENCODING_TYPE_64FC1 = 35;

 ENCODING_TYPE_64FC2 = 36;

 ENCODING_TYPE_64FC3 = 37;

 ENCODING_TYPE_64FC4 = 38;

 ENCODING_TYPE_BAYER_RGGB8=39;

 ENCODING_TYPE_BAYER_BGGR8=40;

 ENCODING_TYPE_BAYER_GBRG8=41;

 ENCODING_TYPE_BAYER_GRBG8=42;

 ENCODING_TYPE_BAYER_RGGB16=43;

 ENCODING_TYPE_BAYER_BGGR16=44;

 ENCODING_TYPE_BAYER_GBRG16=45;

 ENCODING_TYPE_BAYER_GRBG16=46;

 ENCODING_TYPE_YUV422=47;

 }

 EncodingType encoding = 4;

 bool is_bigendian = 5;

 uint32 step = 6;

 bytes data = 7;

}

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 17 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

Code 9 GetImage message

message GetLocationRequest {

 google.protobuf.Timestamp stamp = 1;

}

message GetLocationResponse {

 double latitude = 1;

 double longitude = 2;

 double elevation = 3;

 double orbital_speed = 4;

}

Code 10 GetLocation message

4.5 Accessing the sensors
Following the definitions of the SCFW API, it is now possible to create an application that utilizes

that to communicate with the sensors to request an image from the satellite. For simplicity,

python3 will be used for the development of the applications of this manual. However, as

expected, all officially supported programming languages can be used for communicating with the

SCFW Node.

4.5.1 Making gRPC calls

Communicating with either the Sensors or ARMS requires two objects in python, a communication

channel (gsif_channel in the python code sample) and the client stub (sensors_stub). Through the

client stub, a developer can call an RPC function that is stated in the Services as defined by the

protobuf file.

#!/usr/bin/env python3

import grpc

from proto.unibap_spacecloud_api_pb2 import GetImageRequest

from proto.unibap_spacecloud_api_pb2_grpc import SensorsStub

if __name__ == "__main__":

 print("Started Application")

 gsif_channel = grpc.insecure_channel('172.17.0.1:50002')

 sensors_stub = SensorsStub(gsif_channel)

 try:

 res = sensors_stub.GetImage(GetImageRequest())

 except grpc.RpcError as e:

 print(e)

 print("Application completed")

Code 11 Requesting an Image

4.5.2 Build the app

Once the software has been developed, the next step is to create the dockerfile and then build the
image in a similar manner as the hello world application. The differences in this example compared to
the previous one, is that we must now describe the process that makes the python code that we wrote
into an actually executable script, including installing dependencies as well as generating the python
classes that gRPC and proto require.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 18 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

A developer can choose whether he wants to perform this in the dockerfile or on his host computer.
There are advantages and disadvantages in either solutions, so it is left to the developer to decide
which method provides the best results depending on the problem at hand.

In this example, we shall perform all steps in the dockerfile for simplicity.

Some new dockerfile instructions are introduced in the following example. WORKDIR defines the
target folder for the docker image from where all commands will be run from and all COPY instructions
will copy local artifacts to. It is assumed that the protobuf definitions of the SCFW API are deployed on
the proto subfolder of the sensors-demo project. For more detailed documentation of those and all
dockerfile commands, one can visit the docker website.

FROM spacecloud.unibap.com/unibap/framework-runtime

SHELL ["/bin/bash", "-c"]

RUN apt-get update -qq \

 && apt-get install -qq -y \

 python3 python-virtualenv

WORKDIR /app

COPY proto/*.proto proto/

COPY app.py .

RUN virtualenv venv -p python3 \

 && source venv/bin/activate \

 && python3 -m pip install grpcio grpcio-tools \

 && python3 -m grpc_tools.protoc --python_out=./ --grpc_python_out=./ -

I=./ proto/unibap_spacecloud_api.proto

CMD ["venv/bin/python", "app.py"]

Code 12 Dockerfile for sensors demo

You can pull this container image at spacecloud.unibap.com/unibap/sensors-demo:simple

4.5.3 Deserializing the image

As the image received from the RPC to the sensors_stub is serialized, it must be parsed and

converted to a datatype compatible to popular image processing libraries. The protobuf definition

of the image includes all required information that one can parse to reconstruct the image himself

to his preference. To simplify the process however and ease development for new applications, an

image converter is provided that parses the image message and converts it into a numpy array that

can be used by OpenCV and potentially more python image processing libraries.

Modifying the sensors-demo python code to use the image_converter, the resulting code is

modified only slightly

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 19 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

#!/usr/bin/env python3

import cv2

import grpc

from proto.image_converter import NumpyConverter

from proto.unibap_spacecloud_api_pb2 import GetImageRequest

from proto.unibap_spacecloud_api_pb2_grpc import SensorsStub

if __name__ == "__main__":

 print("Started Application")

 gsif_channel = grpc.insecure_channel('172.17.0.1:50002')

 sensors_stub = SensorsStub(gsif_channel)

 try:

 res = sensors_stub.GetImage(GetImageRequest())

 img = NumpyConverter.from_protobuf(res)

 except grpc.RpcError as e:

 print(e)

 print("Application completed")

Code 13 Image converter python

The dockerfile is again modified to include the OpenCV dependency as well as the NumpyConverter
class.

FROM spacecloud.unibap.com/unibap/framework-runtime

SHELL ["/bin/bash", "-c"]

RUN apt-get update -qq \

 && apt-get install -qq -y \

 python3 python-virtualenv

WORKDIR /app

COPY proto/*.proto proto/

COPY proto/*.py proto/

COPY app.py .

RUN virtualenv venv -p python3 \

 && source venv/bin/activate \

 && python3 -m pip install grpcio grpcio-tools opencv-python \

 && python3 -m grpc_tools.protoc --python_out=./ --grpc_python_out=./ -

I=./ proto/unibap_spacecloud_api.proto

CMD ["venv/bin/python", "app.py"]

Code 14 Image converter dockerfile

You can pull this container image at spacecloud.unibap.com/unibap/sensors-demo:opencv

4.5.4 Location

The sensors_stub provides access to the location of the SCFW Node at any given time through a

similar gRPC. Given that the timestamp of the capture is defined in the image message, one can

use that timestamp to query the precise location of the satellite when that image was taken.

The location message does not require deserialization to be parsed.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 20 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

#!/usr/bin/env python3

import os

import cv2

import grpc

from proto.image_converter import NumpyConverter

from proto.unibap_spacecloud_api_pb2 import GetImageRequest,

GetLocationRequest

from proto.unibap_spacecloud_api_pb2_grpc import SensorsStub

if __name__ == "__main__":

 print("Started Application")

 gsif_channel = grpc.insecure_channel('172.17.0.1:50002')

 sensors_stub = SensorsStub(gsif_channel)

 try:

 res = sensors_stub.GetImage(GetImageRequest())

 img = NumpyConverter.from_protobuf(res)

 req = GetLocationRequest(stamp=res.stamp)

 loc = sensors_stub.GetLocation(req)

 print(loc)

 except grpc.RpcError as e:

 print(e)

 print("Application completed")

Code 15 Get location python

You can pull this container image at spacecloud.unibap.com/unibap/sensors-demo:location

4.6 Getting persistent storage
Access to persistent storage must be setup by the configuration files prior to the execution of the

application. Persistent storage can be attached to a container as a mount point, allowing file

system access from inside the container.

It is recommended, in order to develop reusable container images, to use environment variables

for specifying the mount points of persistent storage when needed. This allows a developed

application to be used in different scenarios by multiple users without needing to change the

source code of the application.

Modifying the demo python code, the new code is

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 21 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

#!/usr/bin/env python3

import os

import cv2

import grpc

from proto.image_converter import NumpyConverter

from proto.unibap_spacecloud_api_pb2 import GetImageRequest

from proto.unibap_spacecloud_api_pb2_grpc import SensorsStub

if __name__ == "__main__":

 print("Started Application")

 gsif_channel = grpc.insecure_channel('172.17.0.1:50002')

 sensors_stub = SensorsStub(gsif_channel)

 try:

 res = sensors_stub.GetImage(GetImageRequest())

 img = NumpyConverter.from_protobuf(res)

 storage_path = os.getenv("STORAGE")

 cv2.imwrite(storage_path + "/image.png", img)

 except grpc.RpcError as e:

 print(e)

 print("Application completed")

Code 16 Persistent storage

The dockerfile that produces the image is not affected by this change.

4.7 Setting up communication
Communication in the SCFW is tightly connected to the persistent storage. The storage volumes

can be tagged to be either UPLINK or DOWNLINK, meaning that they are synced from or to the

SCFW Administration. Once the synchronization event has occurred, the data stored in those

volumes can be erased or kept, defined by ERASE or MAINTAIN.

Those properties are defined using one of ARMS provided RPC services. ARMS RPC is provided on

port 50001. To set this up, similarly to the sensors API, you must create an arms_stub and an

arms_channel.

The SetStorageSynchronizationRequest message is comprised of three fields, name, priority and

mode. Name is a string that can be set as either the name of the volume or the name of the mount

point. In this example it is set as the name of the mounting point, e.g. “/mnt”. Priority can be any

32bit signed integer, setting this number high means that it is very critical for you to synchronize

these data on the next synchronization event. Mode defines if the storage is UPLINK, DOWNLINK,

ERASE or MAINTAIN.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 22 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

#!/usr/bin/env python3

import os

import cv2

import grpc

from proto.image_converter import NumpyConverter

from proto.unibap_spacecloud_api_pb2 import GetImageRequest,

GetLocationRequest, \

 SetStorageSynchronizationRequest

from proto.unibap_spacecloud_api_pb2_grpc import ARMSStub, SensorsStub

if __name__ == "__main__":

 print("Started Application")

 arms_channel = grpc.insecure_channel('172.17.0.1:50001')

 gsif_channel = grpc.insecure_channel('172.17.0.1:50002')

 arms_stub = ARMSStub(arms_channel)

 sensors_stub = SensorsStub(gsif_channel)

 storage_path = os.getenv("STORAGE")

 try:

 res = sensors_stub.GetImage(GetImageRequest())

 img = NumpyConverter.from_protobuf(res)

 cv2.imwrite(storage_path + "/image.png", img)

 req = GetLocationRequest(stamp=res.stamp)

 loc = sensors_stub.GetLocation(req)

 print(loc)

 except grpc.RpcError as e:

 print(e)

 try:

 req = SetStorageSynchronizationRequest(name=storage_path,

priority=10,

mode=SetStorageSynchronizationRequest.SYNCHRONIZE_DOWNLINK_MAINTAIN)

 arms_stub.SetStorageSynchronization(req)

 except grpc.RpcError as e:

 print(e)

 print("Application completed")

Code 17 ARMS communication python

You can pull this container image at spacecloud.unibap.com/unibap/arms-demo:comms

4.8 Running multiple applications
As described in section 3.2.2, it is possible to have concurrent applications running in parallel or to

be launched optionally depending on conditions. ARMS provides a RPC to facilitate this on the

same channel as communication.

This capability can be very useful to minimize deployment size and resource usage as well as

modularity in deployment. As a useful scenario, a deployment can be comprised of the following

applications.

• The main application - MAIN

• A cloud detecting application that uses OpenCL - CLOUD

• A car detecting application that uses the VPU - CAR

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 23 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

At the specified event, MAIN is launched and queries the sensors to receive the image. Once the

image is received, MAIN requests to ARMS to launch CLOUD. CLOUD is forwarded the image from

MAIN, processes the image and decides if the image is occluded by clouds or not. If the image is not

occluded, MAIN asks ARMS to launch CAR in order to process it and save useful data about it. If it is

occluded, both CLOUD and ARMS are terminated and resources as well as power are saved on the

satellite.

The developer can choose whichever mechanism he prefers to pass around data between different

applications. One could define a shared storage mount point, where MAIN saves all images before

launching the CLOUD app with access to them and process them directly with file operations. Or,

given that TCP/IP networking is feasible between the applications with hostname resolution, they

can choose to use some RPC framework to pass around the required data. Given that gRPC and

protos are already defined by the SCFW for the sensors of the satellite, it is simpler and faster to

use the same message types and RPC framework to perform this.

To make things better, the CLOUD app can be reused for a new scenario that detects boats,

without having to deploy a new container image from scratch.

#!/usr/bin/env python3

import os

import grpc

from proto.unibap_spacecloud_api_pb2 import RunApplicationRequest

from proto.unibap_spacecloud_api_pb2_grpc import ARMSStub

if __name__ == "__main__":

 print("Started Application")

 arms_channel = grpc.insecure_channel('172.17.0.1:50001')

 arms_stub = ARMSStub(arms_channel)

 cloud_hostname = os.getenv("CLOUD_HOSTNAME")

 try:

arms_stub.RunApplication(RunApplicationRequest(hostname=cloud_hostname))

 except grpc.RpcError as e:

 print(e)

 print("Application completed")

Code 18 Run concurrent application python

You can pull this container image at spacecloud.unibap.com/unibap/arms-demo:run-app

4.9 Releasing new applications
There are multiple ways a developer can release new applications. Docker allows to either upload

a container image to a compatible docker registry or export the container image to a TAR (Tape

Archive) file.

The SCFW has a private registry that SCFW users can upload their developed applications for

testing on the SCHW dedicated testing systems.

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 24 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

4.9.1 Tagging the application

Before uploading an application, it is required to name the container image. You can perform this

with a docker command on the terminal

docker tag {HASH_ID} {NAME:VERSION}

Code 19 Docker tag

Where {HASH_ID} is the 12 letter ID that docker build returns and {NAME:VERSION} is the path and
version that should be uploaded. If you are uploading the image to the SCFW official registry, it must
be of the form spacecloud.unibap.com/{ACCOUNT_NAME}/{APPLICATION_NAME}:{VERSION}.

4.9.2 Uploading the application

Before uploading the application, you must choose if you want that container image to be shared

to other team members or even the entire SCFW community. In the SCFW registry website you can

create a new organization, add new members to your organization and assign permissions to

them.

Once you have performed these steps, make sure that the tag you have given to your container

image is correct, if you wish to push the image in an organization, the tag must be of the form

spacecloud.unibap.com/{ORGANIZATION_NAME}/{APPLICATION_NAME}:{VERSION}. To upload the

image, simply type in a terminal

docker push {IMAGE_NAME:VERSION}

Code 20 Docker push

4.10 Advanced Usage
Dockerfiles can be used to create more complex deployment scenarios that can be used to both

shrink the size of the developed application and perform more complex tasks such as code

obfuscation.

The following example shows how one can use multistage building to create a much smaller

container image that contains only the runtime dependencies of the app.

FROM spacecloud.unibap.com/unibap/framework-sdk AS builder

WORKDIR /app

RUN apt-get update -qq \

 && apt-get -qq install --no-install-recommends -y git

COPY my_cmake_project/* .

RUN mkdir build \

 && cd build \

 && cmake .. \

 && make

FROM spacecloud.unibap.com/unibap/framework-runtime

WORKDIR /app

COPY --from=builder build/app .

CMD ["./app"]

Code 21 Multistage building

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 25 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

5 Application Testing
Interaction with the SCFW, as described in section 3, is performed through the SCFW

Administration. However, at this early stage, access to the SCFW Administration is currently limited

to Unibap AB employees only. This means that, although developers can download the SDK and

push new applications to the SCFW registry for testing, a manual process is required to run the

developed applications in the dedicated SCFW Nodes.

To request for application testing on the system, one must send an e-mail to the

spacecloud@unibap.com address with subject “SCFW Test” containing the following

• Execution parameters

• TLE for simulated orbit

• Dataset for image queries

5.1 Execution parameters
In the following YAML definition, the execution context is defined by two applications, test and

sensors. The test app will get launched automatically when the context is executed (defined by the

when key), while the sensors app will not get launched unless a RunApplicationRequest for it is

sent to ARMS.

Similarly, test defines what command is to be executed when it is launched, while sensors does not

define a command – meaning that the container image’s default CMD command will be executed.

Environment defines a list of environment variables that will be present when the application is

executed, and storage defines the persistent storage spaces available. A volume name, mount

point and mode (one of “rw” or “ro” for read-write and read-only) are required for each storage

space. The resources section defines all the accessible hardware for the application, CPU cores,

priority, memory, GPU and even VPU access. Logs are also defined in the last section of each

application.

https://www.unibap.com/
https://www.unibap.com/
mailto:spacecloud@unibap.com

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 26 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

applications:

 - image: spacecloud.unibap.com/unibap/hello-world

 hostname: test

 command: /bin/bash -c "touch /mnt/test && sleep 10"

 environment:

 - STORAGE: /mnt

 storage:

 - volume: volume_1

 mount: /mnt

 mode: rw

 resources:

 cpu:

 priority: 1024

 cores: 0.5

 memory:

 swap: 512m

 limit: 256m

 kernel: 32m

 gpu:

 enable: false

 vpu:

 enable: false

 logs:

 max-size: 10m

 max-file: 3

 compress: true

 when: auto

 - image: spacecloud.unibap.com/unibap/sensors-demo:simple

 hostname: sensors

 command: ~

 environment: []

 storage: []

 resources:

 cpu:

 priority: 1024

 cores: 0.5

 memory:

 swap: 512m

 limit: 256m

 kernel: 32m

 gpu:

 enable: false

 vpu:

 enable: false

 logs:

 max-size: 10m

 max-file: 3

 compress: true

 when: manual

Code 22 Execution parameters

5.2 Execution results
After the test run has been completed, you will receive the following e-mail

• Resource usage report

• All contents of the persistent storages that are marked as DOWNLINK

https://www.unibap.com/
https://www.unibap.com/

Document Title

SpaceCloud Framework

DocID

P0-18-UAB-TN-560

Issue

1.0

Propietary UAB 27 (27)

Copyright © Unibap AB (publ.). All rights reserved. Disclosure to third parties of this document or any part thereof, or the use of the information

contained herein for other purposes than here intended, is not permitted except with the prior and written permission of Unibap AB (publ).

• All logs gathered during execution of your applications

• Logs of all the API calls that your applications made to the SCFW ARMS and Sensors

5.3 Conformance testing
The SCFW Conformance Testing suite is part of SCFW Administration and allows all applications to

be rigorously tested before being deployed to SCFW Nodes. This allows interested parties to test

applications against different scenarios and policies to make sure that, once deployed, these

applications follow all the regulations and standards defined by the administrators.

Figure 5 The SCFW Conformance Testing suite

https://www.unibap.com/
https://www.unibap.com/

